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STATEMENT OF WORK 
 
Estimates of the large whale audiograms will be accomplished by completing three major aims:   

I. Development of a comprehensive morphometric database for beaked and baleen 
whale middle and inner ears;  

II.  Completion of the models through direct stiffness measures of the middle and 
inner ears; Generation of test waveforms and impact testing;  

III. Data dissemination and publication of model whale audiograms and impact 
assessments.   

 
 

PROJECT SUMMARY 
 
The primary goal of this research was to provide a proof of concept for employing modeling 
techniques to provide reliable hearing estimates for species thought to be most liable to impacts 
from common, active sound sources deployed in the oceans.  These data are necessary for 
determining ranges of interest for playback experiments, for species specific risk assessments for 
hearing impacts and for effective electrode and sound source placements for proposed auditory 
brainstem response (ABR) measures of live stranded larger whales.   
 
To address this question, the immediate goal was to begin the procedures and acquire the 
preliminary data that may ultimately be applied  toward calculating a model audiogram of large 
whale hearing that demonstrates the ability to accurately estimate hearing ranges and peak 
sensitivities using current anatomical and biomedical engineering techniques.  The model 
proposed was to be created from neuroanatomical data combined with direct measures of middle 
and inner ear stiffness.  The validity of this model will, pending funding continuation, be tested 
by comparing model predictions for land and marine mammal species with published 
audiograms obtained previously from conventional behavioral and electrophysiological methods.   
 
At this stage, preliminary data in all categories have been collected.  Anatomical measures have 
been obtained for both entire heads and for inner ears of two beaked whales and two minke 
whales as well as for 10 ears from these and additional animals.  The anatomical team 
(Ketten/Woods Hole Oceanographic Institution) has completed a partial frequency range map for 
the minke via CT and histologic data.  Specimens provided to the Boston University team for 
comparison have been employed to redesign a piezo electric system to accommodate baleen ears, 
and point stiffness measures have been accomplished for the middle ears of some of these test 
minke specimens.  These data were then compared with earlier results from multiple odontocete 
and land mammal ears.   
 
 
DOD RELEVANCE 
 
At present, scientific research, oil and gas exploration, and U.S. Naval operations are hampered 
by intense public oversight and even injunction because of a lack of knowledge about the 
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potential impacts of sound on the marine environment.  These concerns are particularly acute for 
marine mammal impacts, and much of the recent public and legislative concerns have focused 
explicitly on the effects of sonar and seismic sources on two groups of whales:  beaked whales, 
because of their predominance in strandings associated with military exercises using mid-
frequency sonars; and baleen whales, because of their expected sensitivity to lower frequency 
sounds from seismic exploration sources and low frequency active sonars.   

Normally, detailed information on hearing in mammals is obtained by acute experiments or by 
behavioural tests.  But, while data on baleen whales, the animals most likely to be affected by 
lower frequency sources, are needed urgently, these data are also the most difficult to obtain, as 
these animals are the least approachable animals by conventional methods.  They are not kept in 
captivity and seldom strand live.  Further, they are unlikely to be tested successfully by current 
auditory brainstem response (ABR) techniques, which require the auditory centers to be 
relatively large compared to the rest of the brain and body and sufficiently close to the surface 
for signals to be strong enough to be detected by surface electrodes.  ABR methods work well on 
smaller odontocetes, but may not be viable for baleen whales which have a brain to body mass 
ratio two magnitudes smaller than humans or toothed whales (0.01% vs. 1-2%, respectively).  
Therefore, we must employ alternative methods for obtaining reliable underwater hearing and 
impact estimates for very large whales.   

Auditory system modeling is a well-established and increasingly sophisticated area of auditory 
system research.  Pending additional funding, we will employ the preliminary data obtained 
under this project to model the acoustic properties and hearing capacities, from the inner ear 
through whole head reception paths, of representative species from these groups of whales in 
order to better understand how sounds are processed and perceived by each species and thereby 
to provide critical information for assessing potential impacts from any sound source.   

This work addresses important gaps in our database on marine mammal hearing and will 
improve our understanding of physiological effects of sound.  It builds on and extends previous 
work on hearing models for two control species (bottlenose dolphins and harbour porpoise) that 
were constructed under prior funding for Topic M (Marine Mammals) in FY04 NOPP programs.   

These preliminary data demonstrate the feasibility and value of stiffness and mass measurements 
as major improvements in model accuracy and detail (Mountain et al. 2003, Miller et al. 2006).  
In addition, considerable progress was made in the understanding of the role of head anatomy 
and cochlear duct topology for underwater sound reception and low frequency hearing 
characteristics (Ketten 2004, Koopman et al. 2006, Chadwick et al. 2006).   
 
 
PROJECT DETAILS 
 
We proposed to develop a full research program for biophysically based models of the acoustic 
power flow (from the middle ear into the inner ear and ultimately to the sensory receptor cells) 
determined from anatomical and mechanical measurements in whales to estimate the audiogram 
for nine large whale species.  In this funded effort, we began collection of the primary data for 
target species and demonstrated the adaptability of both CT and stiffness measurement 
technologies to these larger ears.   
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The proposed effort involves two integrated teams:  

An Anatomical Analysis Team (Aim I) (WHOI) led by Darlene Ketten will characterize 
head, middle, and inner ear structures of the candidate species.   

A Physiological Modeling Team (Aim II) (BU) led by David Mountain will implement 
auditory response models using the anatomical data and develop the species-specific model 
audiogram.   

 

 

AIM I (WHOI):  Anatomical Substrates of Hearing  
This aim consists of developing a biomedical scan and histology derived database of baleen and 
beaked whale ear anatomy for model development.   

 

 
AIM I:  Accomplishments  

(see also Publications) 
The Anatomical Analysis Team (AIM I/WHOI) had as its goal to characterize head, middle, and 
inner ear structures of the candidate species.   
 
To date, five intact minke whale (Balaenoptera acutorostrata) and two beaked whale (Ziphius 
cavirostris) heads have been CT scanned.  In addition, ten ears from seven animals and five 
brains with the auditory centers intact have been scanned and preserved for further analyses.  
Two intact ears and surrounding associated peribullar and fatty tissues have also been examined 
with MRI.  These head and ear scans provided the first multi-individual, comprehensive, matrix-
based, species-specific databases of head and ear anatomy and tissue density maps of a baleen 
species head with undisturbed internal anatomy.  In addition, five middle and inner ears have 
been prepared for analysis by the BU Team, and two ears have been processed through 
histology.   
 
From these tissues and techniques, mandibular fat bodies have been identified proximal to and in 
communication with the middle ear.  These tissues are consistent in shape and volume across 
individuals and are similar in consistency and color to fats that are known to be an essential 
component of toothed whale auditory systems.  Samples of these fats have been sent to Dr. 
Heather Koopman (University of North Carolina, Wilmington) for biochemical analyses.   
 
The histologic sections have also yielded the first data on longitudinal variations in basilar 
membrane dimensions for this species.  The data show the inner ear to be consistent with a 9-10 
octave hearing range that is primarily adapted for mid to lower frequencies and with cochlear 
ratios consistent with better propagation of lower frequencies than is common in odontocete ears.   
 
Specifics of each of these study areas are listed below.   
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Task 1: Middle Ear Anatomy 
Three-dimensional reconstructions from the transaxial section data are used to measure cavity 
and ossicular dimensions at consistent orientations and to determine in situ angles of the 
ossicular chain.   
 

Milestones 
1.1:  Complete CT scan of survey of intact ear complexes and gross description and 

measurements of ears 
 

Accomplished:  
Primary measurements were completed for five heads and ears.   
-  Minke whale ears were scanned at 0.1 mm increments, segmented for soft and 

bony tissue elements, and reconstructed as fat, bone, and fluid labyrinth elements 
in order to demonstrate the turn distribution, radii ratios, and axial heights.   

-  In addition, five intact minke heads were scanned at 1 mm increments, for a total 
database of ten ears, of which four also had soft tissue associations.  A significant 
finding in the whole head scans is the presence adjacent to the middle ear cavity 
of fatty tissues, which may function in the same way as specialized fats in the 
odontocetes (i.e., as an outer ear analogue) (Figures 1A and 1B).   

-  Three-dimensional reconstructions of the middle ear ossicles were completed for 
three of these specimens and the data on position and angles were transferred to 
the BU team.   

 
1.2:  Identify practice specimens and distribute to BU  
 

Accomplished:   
Three of the available ears have been distributed to BU for the purpose of providing 
specimens both to assist with refinement of the support and stiffness measurement 
as well as to obtain preliminary data on middle and inner ear stiffness measures.  
(See BU team report for details of measurements.)   

 
Problems Encountered:   

Two persons in addition to Dr. Ketten are in training to perform the ear extractions 
and preparations.  To date they have not been successful at maintaining ear capsule 
integrity.  Therefore, Dr. Ketten will take responsibility for future extractions.   

 
1.3:  Complete measures of middle ear morphometry from CT  

Volume estimates for these middle ears based on the first Amira software tested 
were unsatisfactory.  Errors in that program are corrected in the new version of 
Amira software (version 5), which will be used in any future calculations of 
volumes.  Tests of this software using calibrated fluid volumes show an error of less 
than 2%.  Dr. Ketten also worked with one of the BU students to assist him with 
developing methods for work on middle ear ossicular density.    
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Figure 1A.  3D surface rendering from 3 mm CT scans of the head of a juvenile minke whale 

(Balaenoptera acutorostrata) using AMIRA® visualization software.   
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Figure 1B.  3D surface rendering from 3 mm CT scans of the skull of a juvenile minke whale 

(Balaenoptera acutorostrata) using AMIRA® visualization software.  Highlighted 
in yellow are jaw fats.   

 

 
Task 2: Cochlear Anatomy and Morphometry 
The objective of this task was to obtain quantitative, topographic maps of cochlear 
cytoarchitecture for each ear.  Measurements, reconstructions, and descriptions of minke whale 
inner ear anatomy were based on 3D reconstructions of registered light microscope sections 
(Table 1; Figure 2).   
 
Micro-CT images of ears from other mammals that are required for controls of the model data 
were transferred from BU to WHOI for analysis and image reconstruction.  Comparison of 
image resolution was made between standard and micro-CT images of the same species to 
determine the most useful scanning technique in assessing auditory function.  A new technique 
was also devised for employing CT data as a guide for locating the basilar membrane within the 
uncut periotic bone.   
 

Milestones 
2.1  Complete micro-CT and micro-MRI of inner ears 
 

Accomplished: 
Micro-CT has been accomplished on two control species’ ears.  Micro-MRI is 
completed on one specimen.  The images obtained to date for minke whales are 
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unsatisfactory due to ring artifact, which results from detector failures in the 
machine employed.  A second machine has been identified for use at the Armed 
Forces Institute of Pathology (AFIP) in Washington, DC, and collaborative access 
has been arranged for completing this milestone.   

 
2.2  Complete additional section staining and digitizations 

Two minke ears have been processed through decalcification, embedding in 
celloidin, sectioning, staining, and mounting.   

 
2.3  Complete basilar membrane and neural measurements from histology  

Measurements from one ear are completed.  A second ear has been processed 
through histology and is ready for analysis.   

 
 

Minke Whale Frequency Estimates from Morphometry 

% Length 
from Base 

Width (mm) 
Thickness 

(mm) 
T:W 

Predicted 
Frequency (kHz) 

 
0 - - - - 
6 0.130 0.0110 0.084615 25.90 
10 0.170 0.0083 0.048824 11.99 
15 - - - - 
20 - 0.0077 - - 
25 - 0.0068 - - 
30 0.200 0.0064 0.032000 10.25 
35 0.270 0.0065 0.024074 6.67 
40 0.330 0.0052 0.015758 3.82 
45 - - - - 
50 - 0.0050 - - 
55 0.460 0.0050 0.010870 0.16 
60 0.510 0.0050 0.009804 0.12 

  
Table 1.  Basilar membrane Thickness to Width ratios (T:W) and predicted 

frequencies for minke whale.   
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Figure 2.  Three-dimensional reconstruction of the scalae and basilar membrane from 

celloidin histology of a minke whale temporal bone.   
 
 
AIM II (BU) 
 
Task 3: Middle Ear Stiffness 
Our middle ear stiffness measurement system (Miller et al. 2006) has been redesigned for use on 
minke ears.  During our preliminary experiments we discovered that it was very difficult to 
remove the ear from the head without separating the tympanic bone from the periotic.  This 
separation causes a disruption of the joint between the incus and the stapes.  The stapes remains 
in place in the oval window of the cochlea, so we were able to make stiffness measurements.  
But the stiffness values were radically lower than what we have seen in other species.  To 
accurately measure these low stiffness values, we had to develop a new technique for 
establishing when the force probe was in contact with the stapes.  The approach was to measure 
the distortion in the force waveform when the probe tip was displaced sinusoidally.  When the tip 
is not in contact with the stapes, or is well engaged with the stapes, there is little distortion in the 
force waveform.  When the static position is advanced to the point where the probe tip is barely 
in contact with the stapes, the force waveform becomes quite distorted.  This is because for 
positive displacement the probe is in contact with a stiff structure (stapes), but for negative 
displacement the probe loses contact and registers essentially zero force.  Through detailed 

 
Basilar membrane:  n=1 
 60%  total length  
 
Basal width: 0.13 mm 
Thickness: 0.005 mm 
Apical width: 0.51 mm (1.2 mm) 
Thickness:  0.003 (0.002) 

Turns: 2.25 
 
Basal diameter: 12.5, 12.3  
 
Axial height: 7.25, 7.5  
 
Length: 44.36, 44.76 mm 

Cochlear Measures:  n=2 
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calibration experiments, we have established that the new method for establishing when the 
probe contacts the stapes is superior to the visual observation method used in the past.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Effect of disrupting ossicular chain on middle-ear stiffness 
 
 
We have hypothesized that cetacean middle ear stiffness is dominated by the bony connection of 
the malleus to the tympanic bone.  If this is the case, then the low stiffness values observed in the 
minke ears with the ossicular chain disrupted would be expected, since we would be only 
measuring the stiffness of the annular ligament that holds the stapes in place and not the total 
stiffness of the intact middle ear.  Since minke ears are in short supply, we decided to test this 
hypothesis in two species where ears with intact ossicular chains are easy to obtain, bottlenose 
dolphin and striped dolphin.  In both species, we found that disrupting the middle ear caused the 
stiffness, measured at the stapes, to drop by over an order of magnitude (Figure 3).  This result 
makes it clear that we need to make sure that the middle ear is intact for any stapes stiffness 
measurements to be meaningful for modeling purposes.   
 
 
 
 
 
 
 
                                                                                                Figure 4.  Middle-ear stiffness 
species comparison 
 
 
 
 
 
 
We were also able to use data from these experiments to test our hypothesis that high middle ear 
stiffness is a predictor of poor low-frequency hearing.  The striped dolphin has poorer low-
frequency hearing than the bottlenose dolphin and harbor porpoise, but has similar sensitivity in 
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the high frequencies.  We found that, as predicted, the striped dolphin middle-ear stiffness was 
significantly higher than the bottlenose dolphin and the harbor porpoise stiffness values (Figure 
4).  These results were reported last year at the meeting in Nyborg, Denmark.   
 
We have shown previously that high middle ear stiffness is highly correlated with poor low-
frequency hearing.  To date we have not succeeded in extracting a minke ear from the head 
without disrupting the middle ear.  So we have put considerable effort into modeling the middle 
ear while we try to refine our ear removal techniques.  A full finite-element middle-ear model for 
the bottlenose dolphin has been implemented and tested.  Micro-CT scans of the dolphin ear 
were used to create 3D reconstructions of the middle ear ossicles (Figure 5).  The minke whale 
ear is too large to fit into our micro-CT scanner.  So the minke middle ear anatomical model was 
created using conventional CT scans.  The resulting anatomical models are then imported into 
the COMSOL finite-element method (FEM) modeling package using software that we 
developed.  Since CT imaging is not well suited for imaging soft tissues, several ears were 
dissected and the dimensions of ligaments and muscles were measured manually.  These 
measurements were then used to add these components to the boney components of the middle 
ear.  A mesh of tetrahedral elements is then created (Figure 6) and material properties are 
assigned to the different components of the model.   
 
The FEM model was then used to predict ossicular displacements for different types of forces 
applied to the middle ear.  Figure 7 illustrates the results from a simulation designed to mimic 
our middle-ear stiffness measurements.  A pressure load is applied to the stapes foot plate and 
the resulting displacement of the stapes, as well as other structures, calculated.  The most striking 
aspect of the predicted movement is a rotational displacement around the axis that runs through 
the malleus and incus from the anterior process of the malleus to the short process of the incus.  
This is very much like the middle ear motion in very high frequency terrestrial mammals, such as 
bats and mice.  Given these results and the locations of the middle-ear muscles, we predict that 
the cetacean middle ear functions very much like the middle ears of terrestrial mammals.   
 
By dividing the total force acting on the stapes by the displacement of the stapes footplate, we 
can calculate a stiffness which can be compared to the measured values.  The dolphin model is 
still in need of refinement, since the predicted stiffness is significantly higher than the measured 
stiffness.  Based on the ossicular motions predicted by the model, it appears that the boney 
process which connects the malleus to the tympanic bone acts as a torsional spring.  If we 
simulate the disarticulated ear, we find that the stiffness measured at the stapes decreases 
dramatically, which is in qualitative agreement with our experiments.  In order to develop a 
better understanding for why the model overestimates the middle ear stiffness, we have begun a 
series of experiments both where stiffness is measured at the malleus in intact dolphin ears as 
well as where stiffness is measured at the stapes after various manipulations of the ossiclular 
chain.   
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Bottlenose Dolphin Minke Whale 

 

Figure 5.  3D middle ear reconstructions for bottlenose dolphin 
and minke whale.  Note that the boney process of 
the minke malleus (blue) is longer and thinner than 
that in the dolphin, which suggests that the minke 
middle ear is much more compliant than the dolphin 
middle ear.   

 
 

 

Figure 6.  Tursiops middle ear finite-element model mesh 
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Figure 7.  Predicted displacements from the dolphin FEM model for a force applied to 

the stapes.   
 
 
Task 4: Basilar Membrane Stiffness 
For the minke project we needed to redesign both our ear holder and the force probe.  Our 
previous force probe design (Olson and Mountain 1991) was not sensitive enough to measure 
very soft structures, and we suspected that the apical regions of the minke basilar membrane 
would be significantly more compliant than comparable regions for the other two species for 
which we have extensive data (gerbil and bottlenose dolphin).  The new probe has now been 
extensively tested and calibrated.   
 
Stiffness measurements are made by bringing the probe near the basilar membrane and then 
advancing it in 1 μm steps until the stiffness increases rapidly and then levels off to a shallower 
slope.  This break point is assumed to be the point where the probe has fully engaged the basilar 
membrane but has not deflected it to the point where the stiffness is radically increased.   
 
Although separation of the tympanic from the periotic is a problem for the middle ear 
measurements, it does not affect the basilar membrane.  We have obtained high quality data from 
one minke ear at multiple locations in the basal turn.  The minke stiffness values were slightly 
less than what we have measured in gerbil and much less than those found in bottlenose dolphin 
(Figure 8).  This suggests that the high-frequency limit for hearing in minke whales will be 
significantly less than the high-frequency limit for dolphins (~140 kHz) and somewhat less than 
the high-frequency limit in gerbil (~60 kHz).   
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Figure 8. 

Comparison of minke whale, gerbil, 
and dolphin (tursiops) basilar 
membrane stiffness. 

 
 
Since the majority of the cetacean ears that we get have been frozen and then thawed, we have 
conducted a series of control experiments using gerbil ears.  In these experiments we extract the 
bulla from anesthetized gerbils and freeze them.  The ears are then subsequently thawed and 
basilar membrane stiffness measured.  Our preliminary results indicate that the basilar membrane 
stiffness is reduced to 60-70% of its normal value by the freeze-thaw process.   
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Figure 9. 

Bottlenose dolphin basilar membrane 
stiffness plotted as a function of 
cochlear location.  Data are from two 
fresh ears and three ears that were 
frozen and then thawed for data 
collection.   

 
 
We recently received two bottlenose dolphin ears that were harvested from a stranded animal and 
that were refrigerated rather than frozen.  We were able to begin basilar membrane stiffness 
measurements approximately 24 hours after the animal died.  The stiffness data from these ears 
fell within the range of measurements that we reported previously for frozen ears (Figure 9).  We 
therefore conclude that basilar membrane stiffness measurements made on ears that are frozen 
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shortly after death of an animal and then thawed are representative of the normal values or 
slightly more compliant.  In other words, the measurements from frozen ears should be treated as 
a lower bound on the normal stiffness, but a bound that is not far from the physiological value.   
 
Task 5: Modeling 
Our first modeling subtask was to develop a scaling rule for the compliance to frequency map 
transformations.  After reviewing the available data for species where both the compliance map 
and the frequency-place map were available, we decided that the most reliable data were our own 
gerbil data and von Békésy’s (1960) human data.  These data are complementary in the sense 
that they overlap in the mid-frequency range, but the gerbil data extend to higher frequencies 
than the human data, while the human data extend to lower frequencies than the gerbil data.  A 
polynomial function was fitted to these data (Figure 10) and will be used to predict the minke 
frequency-place map as soon as more minke basilar-membrane stiffness data become available.  
Using this mapping function, we predict that the best frequency for the minke basal turn is 20-30 
kHz.  This value is in good agreement with estimates based on anatomical observations.   
 
 

1

10

100

1,000

10,000

100,000

1,000,000

1.E-11 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06

Volume Compliance (cm^4 per dyne)

C
h

ar
a

ct
er

is
ti

c 
F

re
q

u
en

c
y 

(H
z)

Human

Gerbil

Curve Fit

Figure 10. 

Compliance-frequency map. 

 
 
A preliminary cochlear model for the minke whale has been implemented (Figure 11), but more 
experimental data are needed before the modeling work can be completed.  CT scans were used 
to create 3D reconstructions of the cochlear fluid compartments (Figure 12).  The area-distance 
functions from these reconstructions were used to compute impedance-distance functions for the 
fluid impedances.  Since we do not yet have a complete stiffness map for the minke basilar 
membrane, we scaled our bottlenose dolphin stiffness map based on our preliminary data from 
the basal turn of the minke cochlea.   
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Figure 11.  Cochlear finite-difference model 

 
 
The final step in developing the basilar membrane model is to convert the point stiffness data 
into a volume (acoustic) compliance map for the cochlear partition.  This conversion depends on 
accurate measurement of the basilar membrane dimensions using conventional histological 
techniques, which has been completed as part of Task 2.   
 
 

 

 

 

Figure 12. 

Minke whale cochlear 
reconstruction.  The 

scala tympani 
compartment is shown 

in red and the scala 
vestibuli compartment 

is shown in purple. 

 
 
We have not yet created a full audiogram model, since the full model requires accurate estimates 
for middle-ear stiffness.   
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Summary 
Our most important findings are that both the middle ear and the cochlea in cetaceans appear to 
function in much the same way that they do in terrestrial mammals.  This means that the use of 
computational models derived from our extensive knowledge of terrestrial auditory physiology 
to predict cetacean hearing capabilities is justified.   
 
 
AIM III: Reporting/ Education/Outreach   
 
Task 6: Reporting 
This task comprised peer reviewed publication and development of website incorporating images 
and data from this project.   
 

Milestones 
6.1  Manuscript preparation and submission     

Publications related to this effort from the Ketten WHOI laboratory are listed at the 
end of this report.   

 
6.2  Complete website development for WHOI scanner 

The WHOI scanner website has been completed and Beta tested:  
www.whoi.edu/csi.  Visualizations available include 2D series, 3D shaded surface 
reconstructions, and 3D multi-tissue reconstructions.  Both still and animated data 
sets are represented for multiple species.   

  
6.3  Augment BU Ear Lab site with baleen data  (See BU report for details on this 

section.)  
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